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Recent classification results are presented:

• for the discrete KdV type equations (quad-equations) [1]
• for the Yang-Baxter mappings [2]
• for the discrete Toda lattice type equations [3, 4]
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1 Introduction

1.1 Types of equations

In the simplest situation we consider equations defined on the lattice Z2. Quad-equations are
equations of the form

(1) Qm,n(um,n, um+1,n, um,n+1, um+1,n+1) = 0.

The variables u are associated to the vertices of the square lattice. The equation must be solvable
with respect to any of 4 unknowns.

The general form of Yang-Baxter maps is

(2) um,n+1 = fm,n(um,n, vm,n), vm+1,n = gm,n(um,n, vm,n).

The variables u, v are associated to the edges of the square lattice. The simplest choice of the
initial data for both types of equations is along the coordinate axes or on the “staircase”.
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Discrete Toda type lattices are equations of the form

f1
m,n(um,n, um−1,n) + f2

m,n(um,n, um+1,n) + f3
m,n(um,n, um,n−1) + f4

m,n(um,n, um,n+1) = 0.

The simplest choice of initial data is on the pair of lines n = 0, n = 1.

Discrete relativistic Toda type lattices:

f1
m,n(um,n, um−1,n) + f2

m,n(um,n, um+1,n) + f3
m,n(um,n, um,n−1) + f4

m,n(um,n, um,n+1)

+ f5
m,n(um,n, um−1,n−1) + f6

m,n(um,n, um+1,n+1) = 0.

The simplest choice of initial data is on the double staircase.
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1.2 Planar graphs and quad-graphs

Integrability of the equations (1), (2) (accordingly to the definition below) is a local property.
In particular, analogous equations can be considered not only on Z2, but also on arbitrary quad-
graph, that is cellular decomposition of the plane with quadrilateral cells. On the correct choice
of initial data for such equations see [8].

Analogously, discrete Toda lattices can be defined as equations on “stars” for arbitrary planar
graph G: ∑

j:(i,j)∈EG

fij(ui, uj) = 0

Remind, that the graph G can be associated to the bipartite quad-graph Q, such that

VQ = VG ∪ VG∗ , EQ = {(i, i∗)| i ∈ VG, i
∗ ∈ VG∗ , i ∈ f(i∗)}

where f(i∗) is the face of G, corresponding to the vertex i∗ of dual graph.

[6] V.E. Adler. Discrete equations on planar graphs. J. Phys. A 34 (2001) 10453–10460.
[7] A.I. Bobenko, Yu.B. Suris. Integrable systems on quad-graphs. Int. Math. Res. Notices 11

(2002) 573–611.
[8] V.E. Adler, A.P. Veselov. Cauchy problem for integrable discrete equations on quad-graphs.

Acta Appl. Math. 84 (2004) 237–262.
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In other words, the edges of the graph G are diagonals of the faces of quad-graph Q joining the
vertices of one of two types. In the next Section we will see that this correspondence can be
prolonged on quad-equations and discrete Toda lattices.

Example 1. Square lattice.
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In other words, the edges of the graph G are diagonals of the faces of quad-graph Q joining the
vertices of one of two types. In the next Section we will see that this correspondence can be
prolonged on quad-equations and discrete Toda lattices.

Example 1. Square lattice.
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In other words, the edges of the graph G are diagonals of the faces of quad-graph Q joining the
vertices of one of two types. In the next Section we will see that this correspondence can be
prolonged on quad-equations and discrete Toda lattices.
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Example 2. Triangle lattice.
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Example 2. Triangle lattice.
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Example 2. Triangle lattice.
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1.3 Relation between the different types of equations: KdV
example

• Potential KdV equation: ut = uxxx − 6u2
x

• Bäcklund transformation:

u1,x + ux = (u1 − u)2 + a1, u2,x + ux = (u2 − u)2 + a2

• Nonlinear superposition principle (quad-equation):

(3) (u− u12)(u1 − u2) = a1 − a2

Parameters a are associated to the edges of quad-graph. The parameters corresponding to the
opposite edges of a cell coincide.
• Yang-Baxter map (v = u1 − u, w = u2 − u):

v2 = −w +
a1 − a2

w − v
, w1 = −v +

a1 − a2

w − v

• Toda lattice (the sum is over the cells incident to the vertex u):∑
n

an − an+1

un,n+1 − u
= 0
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2 Quad-equations

2.1 3D-consistency

Denote the vertices of the cube as shown below and consider the system of 6 quad-equations
associated to the faces of the cube (assuming uij := uji):

Qij(u, ui, uj , uij) = 0, Qij(uk, uik, ujk, u123) = 0.

This system is called 3D-consistent [9, 7] if the values u123 calculated in three possible ways
coincide for any choice of initial data u, u1, u2, u3.
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12

sc initial datasc intermediate valuessc the results coincide

[9] F.W. Nijhoff, A.J. Walker. The discrete and continuous Painlevé hierarchy and the Garnier
system. Glasgow Math. J. 43A (2001) 109–123.
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Example 3. Discrete KdV equation (3).

(u− uij)(ui − uj) = ai − aj , (uk − u123)(uik − ujk) = ai − aj .

(Parameter ai corresponds to 4 edges of the cube parallel to the edge (0, i).) One of the ways of
computation yields

u12 = u− a1 − a2

u1 − u2
, u13 = u− a1 − a3

u1 − u3
,

u123 = u1 −
a2 − a3

u12 − u13
=
a1u1(u2 − u3) + a2u2(u3 − u1) + a3u3(u1 − u2)

a1(u2 − u3) + a2(u3 − u1) + a3(u1 − u2)
.

Since this expression is symmeric with respect to the subscripts, two another ways give the same
result.

Example 4. Linear equation.

uij − ui − uj + u = 0, u123 − uik − ujk + uk = 0.

Independently on the order of computations

u123 = u1 + u2 + u3 − 2u.
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2.2 Classification theorem

The classification of 3D-consistent equations is obtained in [1] under the following assump-
tions:

• Qij(u, ui, uj , uij) = Q(u, ui, uj , uij , ai, aj) where ai are parameters assigned to the edges
parallel to (0, i).
• Function Q is affinne-linear polynomial in u, with coefficients depending on a:

Q = c1uu1u2u12 + · · ·+ c16.

• Equations admit the symmetry group of the square (ε2 = σ2 = 1):

(4) Q(u, u1, u2, u12, a1α2) = εQ(u, u2, u1, u12, a2, a1) = σQ(u1, u, u12, u2, a1, a2)

• The tetrahedron condition is satisfied: u123 as the function on initial data does not depend
on u. (Cf. examples 3,4).



2 Quad-equations 21

The proof is based on the following important correspondence between affine-linear equations
on 4 variables, biquadratic polynomials on 2 variables and 4-th degree polynomials on 1 variable:

Q(u, v, w, x) → g(u, v) = QwQx −QQwx → r(u) = g2
v − 2ggvv.

This correspondence is invariant with respect to the Möbius transformations.
It can be proved that under the imposed assumptions the relation holds

Qu2Qu12 −QQu2u12 = k(a1, a2)h(u, u1, a1)

where
k(a2, a1) = −k(a1, a2), h(u1, u, a1) = h(u, u1, a1)

and moreover, the biquadratic h is such that the polynomial

h2
u1
− 2hhu1u1 = r(u)

does not depend on parameters at all. After this, the classification is reduced to the problem of
reconstruction of h and Q starting from the polynomial r which can be bringed to some canonical
form by Möbius transformations.
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Theorem 1. Up to the simultaneous Möbius transformations of variables and point transformations
of parameters 3D-consistent equations satisfying the above assumptions are exhausted by the
following list:

a1(u− u2)(u1 − u12)− a2(u− u1)(u2 − u12) = δ2a1a2(a2 − a1)(Q1)
a1(u− u2)(u1 − u12)− a2(u− u1)(u2 − u12)(Q2)

+ a1a2(a1 − a2)(u+ u1 + u2 + u12) = a1a2(a1 − a2)(a2
1 − a1a2 + a2

2)

(a2
2 − a2

1)(uu12 + u1u2) + a2(a2
1 − 1)(uu1 + u2u12)− a1(a2

2 − 1)(uu2 + u1u12)(Q3)

= δ2(a2
1 − a2

2)(a
2
1 − 1)(a2

2 − 1)/(4a1a2)

sn a1 sn a2 sn(a1 − a2)(k2uu1u2u12 + 1) + sn a1(uu1 + u2u12)(Q4)
− sn a2(uu2 + u1u12)− sn(a1 − a2)(uu12 + u1u2) = 0, sn a ≡ sn(a; k)

(u− u12)(u1 − u2) = a1 − a2(H1)

(u− u12)(u1 − u2) + (a2 − a1)(u+ u1 + u2 + u12) = a2
1 − a2

2(H2)

a1(uu1 + u2u12)− a2(uu2 + u1u12) = δ(a2
2 − a2

1)(H3)

a1(u+ u2)(u1 + u12)− a2(u+ u1)(u2 + u12) = δ2a1a2(a1 − a2)(A1)

(a2
2 − a2

1)(uu1u2u12 + 1) = a1(a2
2 − 1)(uu1 + u2u12)− a2(a2

1 − 1)(uu2 + u1u12)(A2)



2 Quad-equations 23

• Eq (A1) is reduced to (Q1) by the change ui → −ui; (A2) is reduced to (Q3) by the change
ui → 1/ui.
• Eqs (Q1)–(Q3) and (H1), (H2) can be obtained from (Q4), (H3) by degenerations and as

limiting cases.
• Eq (Q4) defines the nonlinear superposition of BTs for the Krichever-Novikov eq [10]

(5) ut = uxxx −
3(u2

xx − r(u))
2ux

, r(5) = 0

• The given form of (Q4) is found by Hietarinta [SIDE-2004 talk]. In [1] this equation
was presented in much more cumbersome form related to the Weierstrass form of elliptic curve
A2 = r(a) = 4a3 − g2a− g3.
• The problem of classification without additional assumptions (affine-linearity, prescribed

dependence on parameters, symmetry, tetrahedron property) remains open. In particular, several
examples without tetrahedron property were found in [11]. It can be proved that the biquadratics
h corresponding to such equations are reducible.
• Several equations are known with polynomial Q quadratic in each variable, but all these

examples can be reduced to affine-linear ones by Miura type transformations.

[10] I.M. Krichever, S.P. Novikov. Holomorphic bundles over algebraic curves and nonlinear equa-
tions. Uspekhi Mat. Nauk 35:6 (1980) 47–68.

[11] J. Hietarinta. A new two-dimensional lattice model that is “consistent around a cube”.
J. Phys. A 37:6 (2004) L67–73.
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2.3 Zero curvature representation

An affine-linear equation Q = 0 may be interpreted as Möbius transformation between any
pair of variables, with coefficients depending on the rest pair. Let

u13 = M(u1, u, a1, a3;u3) =
Au3 +B

Cu3 +D

then

u23 = M(u2, u, a2, a3;u3), u123 = M(u12, u2, a1, a3;u23) = M(u12, u1, a2, a3;u13).

Since the composition of Möbius transformations corresponds to the product of the matrices,
hence denoting a3 → λ and introducing the normalization factor yields the zero curvature repre-
sentation

L(u12, u1, a2, λ)L(u1, u, a1, λ) = L(u12, u2, a1, λ)L(u2, u, a2, λ)

with the matrix

L(u1, u, a1, λ) = (AD −BC)−1/2

(
A B
C D

)
.

For example, in the case of the discrete KdV equation (H1) one obtains

L(u1, u, a1, λ) =
(
u −uu1 + a1 − λ
1 −u1

)
.
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2.4 Three-leg form and discrete Toda lattices

Definition 1. Let the quad-equation Q(u, u1, u2, u12, a1, a2) = 0 possesses the square symmetry
(4). We will say that it admits three-leg form if it is equivalent to the equation of the form

φ(u, u12, a1, a2) = ψ(u, u1, a1)− ψ(u, u2, a2).

Any three-leg equation corresponds to a discrete Toda lattice on the planar graph∑
n

φ(u, un,n+1, an, an+1) = 0

where the sum is taken over the edges incident to the vertex u.
Three-leg form exists for all equations from the above list. The general formula can be proved

ψ(u, u1, a1) =
∫

du1

h(u, u1, a1)
+ C(u, a1).

For the equations (Qn), a point change of parameters a = a(α) exists such that φ(u, u12, a1, a2) =
ψ(u, u12, a(α1−α2)). Moreover, it is often covenient to make a change of the variables u = u(x)
as well and use the multiplicative three-leg form

F (x, x12, α1 − α2) = F (x, x1, α1)/F (x, x2, α2).
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F (x, y, α) u = u(x) a = a(α)

(Q1)δ=0 exp(α/(x− y)) x α

(Q1)δ=1
x− y + α

x− y − α
x α

(Q2)
(x+ y + α)(x− y + α)
(x+ y − α)(x− y − α)

x2 α

(Q3)δ=0
sinh(x− y + α)
sinh(x− y − α)

exp 2x exp 2α

(Q3)δ=1
sinh(x+ y + α) sinh(x− y + α)
sinh(x+ y − α) sinh(x− y − α)

cosh 2x exp 2α

(Q4)
sn(x+ α)− sn y
sn(x− α)− sn y

· Θ4(x+ α)
Θ4(x− α)

snx α

(H1) :
a1 − a2

u− u12
= u1 − u2, (H2) :

u− u12 + a1 − a2

u− u12 − a1 + a2
=
u+ u1 + a1

u+ u2 + a2

(H3) :
a2u− a1u12

a1u− a2u12
=
uu1 + δa1

uu2 + δa2

Remark. For the eq (Q4) with the polynomial r in Weierstrass form, the leg is

F =
σ(x+ y + α)σ(x− y + α)
σ(x+ y − α)σ(x− y − α)

.
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3 Yang-Baxter maps

Consider mappings Rij : Ci × Cj → Ci × Cj where Ci are some spaces or manifolds. Let

the mapping R̂ij : C1 × C2 × C3 → C1 × C2 × C3 acts as Rij on i-th and j-th factors and be
identical on the rest one.
Definition 2. Rij are called Yang-Baxter mappings if

R̂23 ◦ R̂13 ◦ R̂12 = R̂12 ◦ R̂13 ◦ R̂23
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We will use the following equivalent definition.

Let Fij : Ci × Cj → Ci × Cj and

Fij : (Xi, Xj) 7→ (Xij , Xji), Fij : (Xik, Xjk) 7→ (Xikj , Xjki).

Definition 3. The mappings Fij are called 3D-consistent if

Xijk ≡ Xikj
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3.1 Yang-Baxter mappings on the linear pencils of conics

Let X1, X2 be points on the conic sections C1, C2 respectively.

C1

C2

12
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The mapping F12 : C1 × C2 → C1 × C2 is defined as follows:

X12 = X1X2 ∩ C1, X21 = X1X2 ∩ C2

C1

C2

1
12

2

21
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Consider the initial data on three conics from the linear pencil.

C1

C2

C3

12
3
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Consider the initial data on three conics from the linear pencil.

Apply the mappings Fij : (Xi, Xj) 7→ (Xij , Xji).

C1

C2

C3

1
12

13

2

21

23

3

31

32
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Consider the initial data on three conics from the linear pencil.

Apply the mappings Fij : (Xi, Xj) 7→ (Xij , Xji).
Apply the mappings once more. Let Fij : (Xik, Xjk) 7→ (Xikj , Xjki).

Theorem 2. The mappings Fij are 3D-consistent: Xijk = Xikj .

C1

C2

C3

1
12

13 123

2

21

23

213

3

31

32

312
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Under a rational parametrization of the conics Ci : Xi = Xi(xi) the mapping F12 turns into a
birational mapping on CP1 × CP1. There exist 5 projective types of the linear pencils of conics
Ci = C + aiK [12]. These types lead to the following list of the mappings (i, j ∈ {1, 2}):

(6)

xij = aixj
(1− a2)x1 + a2 − a1 + (a1 − 1)x2

a2(1− a1)x1 + (a1 − a2)x2x1 + a1(a2 − 1)x2

xij =
xj

ai
· a1x1 − a2x2 + a2 − a1

x1 − x2

xij =
xj

ai
· a1x1 − a2x2

x1 − x2

xij = xj

(
1 +

a2 − a1

x1 − x2

)
xij = xj +

a1 − a2

x1 − x2

The first one corresponds to the above figures with 4-point locus.

All these mappings can be obtained from those quad-equations listed in Theorem 1, which
are invariant with respect to the shift u→ u+ c or scaling u→ cu, by the changes xi = ui − u
or xi = ui/u.

[12] M. Berger. Geometry. Springer-Verlag, Berlin 1987.
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3.2 Quadrirational mappings

Definition 4 ([13, 2]). The mapping F : C1 × C2 → C1 × C2 is called quadrirational if it and
the mappings F (x1, ·) : C2 → C2, F (·, x2) : C1 → C1 for almost all xi ∈ Ci are birational
isomorphisms.

x1

x2

x12

x21

�
�

�
�

���

F
�

�
�

�
��	

F−1

x1

x2

x12

x21

@
@

@
@

@@I

F̄

@
@

@
@

@@R

F̄−1

In the case C1 = C2 = CP1, a quadrirational mapping is of the form

F : x12 = f(x1, x2) =
a(x2)x1 + b(x2)
c(x2)x1 + d(x2)

, x21 = g(x1, x2) =
A(x1)x2 +B(x1)
C(x1)x2 +D(x1)

with some special coefficients, such that the mappings F−1, F̄ ,F̄−1 be of the same form.

[13] P. Etingof. Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter
equation. Preprint math.QA/0112278.
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Assuming the nondegeneracy conditions

fx1gx2 − fx2gx1 6≡ 0, fx1 6≡ 0, fx2 6≡ 0, gx1 6≡ 0, gx2 6≡ 0,

one can prove that the coefficients can be at most quadratic polynomials. Moreover, the mapping
F is defined by the pair of polynomial equations

P (x2, x1, x21) = 0, Q(x2, x12, x21) = 0,

where either
• P,Q are linear in each argument

or
• P,Q are linear in x2, x21 and quadratic resp. in x1, x12, and are related by formula

Q(x2, x12, x21) = (γx12 + δ)2P
(
x2,

αx12 + β

γx12 + δ
, x21

)
.

Theorem 3. Up to the Möbius transformations, all nondegenerate quadrirational mappings, such
that max deg(a, b, c, d) = maxdeg(A,B,C,D) = 2, are exhausted by the list (6).
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4 Multifield generalizations

4.1 Quad-equations

Classification of multifield quad-equations is hardly possible. One of the reasons is that these
equations are not polynomial, in contrast to the scalar case. Probably, the simplest example is
the vector analog of the discrete KdV eq:

u− u12 =
a1 − a2

|u1 − u2|2
(u1 − u2).

This equation admits an interesting reduction ai = −|ui − u|2 [14]. Some other examples can be
found in [15, 16].

[14] V.E. Adler. Integrable deformations of a polygon. Physica D 87 (1995) 52–57.
[15] A.I. Bobenko, Yu.B. Suris. Integrable non-commutative equations on quad-graphs. The con-

sistency approach. Lett. Math. Phys. 61 (2002) 241–254.
[16] W.K. Schief. Isothermic surfaces in spaces of arbitrary dimension: integrability, discretization

and Bäcklund transformations. A discrete Calapso equation. Stud. Appl. Math. 106 (2001)
85–137.
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The nonabelian analogs for the Krichever-Novikov eq (5) exist only for few special cases:

• r = 0 (Schwarz-KdV). The equation, its BT and NSP are

ut3 = uxxx −
3
2
uxxu

−1
x uxx, ui,x = ai(u− ui)u−1

x (u− ui)

a1(u− u2)(u2 − u12)−1 = a2(u− u1)(u1 − u12)−1

• r = 4

ut3 = uxxx −
3
2
uxxu

−1
x uxx + 6u−1

x + 3[u−1
x , uxx], ui,x =

1
ai

(u− ui + ai)u−1
x (u− ui − ai)

a1(u1 − u12 + a2)(u− u1 − a1)−1 = a2(u2 − u12 + a1)(u− u2 − a2)−1

• r = u2

ut3 = uxxx −
3
2
(uxxu

−1
x uxx + uxxu

−1
x u− uu−1

x uxx − uu−1
x u)

ui,x =
1

1− a2
i

(u− aiui)u−1
x (aiu− ui)

(1− a2
1)(u1 − a2u12)(a1u− u1)−1 = (1− a2

2)(u2 − a1u12)(a2u− u2)−1

These equations possess also 3-legs forms, generating nonabelian Toda lattices.
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4.2 Yang-Baxter maps

The geometric construction of Yang-Baxter maps works also on the linear pencil of quadrics.
Indeed, all points lie on the plane defined by the initial data X1, X2, X3, so that 3D-consistency
is inherited from the planar situation. Nevertheless, the mapping itself cannot be reduced to the
scalar one. Its general form is

Xij = Xj +
(ai − aj)(〈Xj , SXj〉+ 〈s,Xj〉+ σ)
〈Xi −Xj , (aiS + T )(Xi −Xj)〉

(Xi −Xj)

where S, T are arbitrary symmetric matrices, s is an arbitrary vector and σ is an arbitrary scalar.
In [17], another examples of multifield Yang-Baxter maps were obtained by consideration of

the interaction of matrix solitons with the non-trivial internal parameters (vector analog of phase
shift).

[17] A.P. Veselov. Yang-Baxter maps and integrable dynamics. Phys. Lett A 314 (2003) 214–221.
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